Counting and Sampling Problems on Eulerian Graphs
نویسندگان
چکیده
In this thesis we consider two sets of combinatorial structures defined on an Eulerian graph: the Eulerian orientations and Euler tours. We are interested in the computational problems of counting (computing the number of elements in the set) and sampling (generating a random element of the set). Specifically, we are interested in the question of when there exists an efficient algorithm for counting or sampling the elements of either set. The Eulerian orientations of a number of classes of planar lattices are of practical significance as they correspond to configurations of certain models studied in statistical physics. In 1992 Mihail and Winkler showed that counting Eulerian orientations of a general Eulerian graph is #P-complete and demonstrated that the problem of sampling an Eulerian orientation can be reduced to the tractable problem of sampling a perfect matching of a bipartite graph. We present a proof that this problem remains #Pcomplete when the input is restricted to being a planar graph, and analyse a natural algorithm for generating random Eulerian orientations of one of the afore-mentioned planar lattices. Moreover, we make some progress towards classifying the range of planar graphs on which this algorithm is rapidly mixing by exhibiting an infinite class of planar graphs for which the algorithm will always take an exponential amount of time to converge. The problem of counting the Euler tours of undirected graphs has proven to be less amenable to analysis than that of Eulerian orientations. Although it has been known for many years that the number of Euler tours of any directed graph can be computed in polynomial time, until recently very little was known about the complexity of counting Euler tours of an undirected graph. Brightwell and Winkler showed that this problem is #P-complete in 2005 and, apart from a few very simple examples, e.g., series-parellel graphs, there are no known tractable cases, nor are there any good reasons to believe the problem to be intractable. Moreover, despite several unsuccessful attempts, there has been no progress made on the question of approximability. Indeed, this problem was considered to be one of the more difficult open problems in approximate counting since long before the complexity of exact counting was resolved. By considering a randomised input model, we are able to show that a very simple algorithm can sample or approximately count the Euler tours of almost every d-in/d-out directed graph in expected polynomial time. Then, we present some partial results towards showing that this algorithm can be used to sample or approximately count the Euler tours of almost every 2d-regular graph in expected polynomial time. We also provide some empirical evidence to support the unproven conjecture required to obtain this result. As a sideresult of this work, we obtain an asymptotic characterisation of the distribution of the number of Eulerian orientations of a random 2d-regular graph.
منابع مشابه
Counting the Number of Eulerian Orientations
Consider an undirected Eulerian graph, a graph in which each vertex has even degree. An Eulerian orientation of the graph is an orientation of its edges such that for each vertex v, the number of incoming edges of v equals to outgoing edges of v, i.e. din(v) = dout(v). Let P0 denote the set of all Eulerian orientations of graph G. In this paper, we are concerned with the questions of sampling u...
متن کاملSampling Eulerian orientations of triangular lattice graphs
We consider the problem of sampling from the uniform distribution on the set of Eulerian orientations of subgraphs of the triangular lattice. Although it is known that this can be achieved in polynomial time for any graph, the algorithm studied here is more natural in the context of planar Eulerian graphs. We analyse the mixing time of a Markov chain on the Eulerian orientations of a planar gra...
متن کاملExact counting of Euler Tours for Graphs of Bounded Treewidth
In this paper we give a simple polynomial-time algorithm to exactly count the number of Euler Tours (ETs) of any Eulerian graph of bounded treewidth. The problems of counting ETs are known to be ♯P complete for general graphs (Brightwell and Winkler, 2005 [4]). To date, no polynomial-time algorithm for counting Euler tours of any class of graphs is known except for the very special case of seri...
متن کاملExact and Approximate Counting of Graph Objects: Independent Sets, Eulerian Tours, and More
Counting problems are studied in a variety of areas. For example, enumerative combinatorics, statistics, statistical physics, and artificial intelligence. In this dissertation, we investigate several counting problems, which are subjects of active research. The specific problems considered are: counting independent sets in bipartite graphs (#BIS), computing the partition function of the hard-co...
متن کاملAsymptotic enumeration of Eulerian circuits for graphs with strong mixing properties
Let G be a simple connected graph all of whose vertices have even degrees. An Eulerian circuit in G is a closed walk (see, for example, [2]) which uses every edge of G exactly once. Two Eulerian circuits are called equivalent if one is a cyclic permutation of the other. It is clear that the size of such an equivalence class equals the number of edges of graph G. Let EC(G) denote the number of e...
متن کامل